Course at a Glance

Plan

The Course at a Glance provides a useful visual organization of the AP Calculus AB and AP Calculus BC curricular components, including:

- Sequence of units, along with approximate weighting and suggested pacing. Please note, pacing is based on 45-minute class periods, meeting five days each week for a full academic year.
- Progression of topics within each unit.
- Spiraling of the big ideas and mathematical practices across units.

Teach
MATHEMATICAL PRACTICES
Mathematical practices spiral throughout the course.

1	Implementing	3	Justification
	Mathematical		Communication
	Processes	$\mathbf{4}$	Comm
	and Notation		
2	Connecting		
	Representations		

BIG IDEAS
Big ideas spiral across topics and units.

```
CHA Change
LIM Limits
FUN Analysis of Functions
```


BC ONLY

The purple shading represents BC only content.

Assess

Assign the Personal Progress Checks-either as homework or in class-for each unit. Each Personal Progress Check contains formative multiplechoice and free-response questions. The feedback from the Personal Progress Checks shows students the areas where they need to focus.

1.16 Working with the Intermediate Value Theorem (IVT)

> 1.1 Introducing Calculus: Can Change Occur at an Instant?
1.2 Defining Limits and
Using Limit Notation
1.3 Estimating Limit Values from Graphs
1.4 Estimating Limit Values from Tables
1.5 Determining Limits Using Algebraic Properties of Limits
1.6 Determining Limits Using Algebraic Manipulation
1.7 Selecting Procedures for Determining Limits
1.8 Determining Limits Using the Squeeze Theorem
1.9 Connecting Multiple Representations of Limits
1.10 Exploring Types of Discontinuities
1.11 Defining Continuity at a Point
1.12 Confirming Continuity over an Interval
1.13 Removing Discontinuities
1.14 Connecting Infinite Limits and Vertical Asymptotes
1.15 Connecting Limits at Infinity and Horizontal Asymptotes

Personal Progress Check 1
Multiple-choice: ~45 questions
Free-response: 3 questions (partial)

Differentiation:
 Definition and Basic Derivative Rules

APEXAM WEIGHTING	$\mathbf{1 0 - 1 2 \%}$ AB	$\mathbf{4 - 7 \%}$ bс
CLASS PERIODS	$\boldsymbol{\sim 1 3 - 1 4 ~ A B ~}$	$\boldsymbol{\sim 9 - 1 0}$ bc

2.9 The Quotient Rule of Tangent, Cotangent, Secant, and/or Cosecant Functions

Personal Progress Check 2

Multiple-choice: ~30 questions Free-response: 3 questions (partial)

$\begin{aligned} & \text { UNIT } \\ & \hline \end{aligned}$	Differentiation: Composite, Implicit, and Inverse Functions
WEIGHTING	9-13\% AB 4-7\% вс
class perioos	$\sim 10-11$ ав $\sim 8-9$ вс

3.1 The Chain Rule
3.2 Implicit Differentiation
3.3 Differentiating Inverse Functions
3.4 Differentiating

Inverse Trigonometric
Functions
3.5 Selecting Procedures
for Calculating
Derivatives
FUN
3.6 Calculating HigherOrder Derivatives

4.1 Interpreting the Meaning of the Derivative in Context
4.2 Straight-Line Motion: Connecting Position, Velocity, and Acceleration
4.3 Rates of Change in Applied Contexts Other Than Motion
4.4 Introduction to Related Rates
4.5 Solving Related Rates Problems
4.6 Approximating Values of a Function Using Local Linearity and Linearization
4.7 Using L'Hospital's Rule for Determining Limits of Indeterminate Forms

5.1 Using the Mean Value Theorem
5.2 Extreme Value Theorem, Global Versus Local Extrema, and Critical Points

5.3 Determining Intervals on Which a Function Is Increasing or Decreasing
5.4 Using the First Derivative Test to Determine Relative (Local) Extrema

5.5 Using the Candidates Test to Determine Absolute (Global) Extrema
5.6 Determining Concavity
of Functions over Their Domains
=un
5.7 Using the Second Derivative Test to Determine Extrema
5.8 Sketching Graphs of Functions and Their Derivatives
5.9 Connecting a Function, Its First Derivative, and Its Second Derivative
5.10 Introduction to Optimization Problems
5.11 Solving Optimization Problems
5.12 Exploring Behaviors of Implicit Relations

Personal Progress Check 3
Multiple-choice: ~ 15 questions
Free-response: 3 questions (partial/full)

